新知博览

半阳晚报

2025年10月10日 星期五

人类比黑猩猩更聪明的原因

科学家找到基因"快进键"

人类加速区:基因组中的

演"一样,指挥着其他基因的表达强度。 已有证据表明,不少HARs 与大脑发育密 切相关。但究竟哪些HARs 才是真正推动 人类认知进化的"核心引擎",仍是一个 未解之谜。

基因组的"质检员": NMD 通路如何影响大脑进化?

近期,一项引人注目的研究聚焦于名为 NMD (无义介导的 RNA 降解)通路。你可以把 NMD 路想象成细胞内的"分子质检员",它的主要职责是识别并清除带有提前终止密码子的异常 RNA 分子,从而防止错误蛋白质生成。这个通路表的准确性,还在神经发育和神经元功能中发挥着关键作用。鉴于此,科学家们推测: NMD通路中可能隐藏着一些 HARs,它们或许参与了人类独特认知特征的演化过程。研究团队深入分析了 NMD 通路中 24 个关键基因与已知 3171 个 HARs 之

间的潜在关联。结果令人振奋:他们发现,NMD关键基因 SMG6 中包含两个重要的 HARs: HAR53 和 HAR123。 SMG6 基因编码一种核酸内切酶,这种酶在神经祖细胞(一类未分化的多能或专能细胞)向不同类型神经细胞分化的过程中发挥作用。通过功能实验,HAR123 能显著促进神经祖细胞的生成,而另一个 HAR53 却作用不大。由此,HAR123 成功脱颖而出,被认为是可能推动人类大脑进化的关键片段。

HAR123:驱动人类认知跃升的"关键片段"

尽管 HAR123 在哺乳动物中高度保守,但自人类与黑猩猩分化以来,这个片段却经历了快速而显著的演化,累积了9个核苷酸差异。别看这些变化看似微小,却带来了深远的影响。首先,作为增强子,HAR123 不仅能促进神经祖细胞的生成,更重要的是能精细调控神经元与

飞机的舷窗为什么都是圆角的?

如今,飞机已经成为了我们日常出行不可或缺的交通工具,有些小伙伴在坐飞机时 可能会发现,飞机的窗户都是圆形或者椭圆

为什么飞机的窗户不是我们常见的方形 窗户呢?飞机的窗户为什么要这样设计,难 道仅仅是出于美学的考量吗?事实上,这里 有很大的学问。同时,也是经过惨痛的教训 得来的经验

其实,最初的飞机舷窗并不是圆角的,而 是方形的。1952年英国德哈维兰公司研制的 "彗星",横空出世,这也是第一架以喷气式发 动机作为动力的民用客机。这款飞机不仅速度快,而且采用密封式座舱,可飞得更高,平稳性和舒适性也是前所未有的。人们本以为 这架客机的出现会是客机的一次历史性突 破,但事实却不尽如人意。

从1952年10月到1954年4月短短18个 月的时间里,17架"彗星"在飞行中,竟有6架 相继发生事故,有99名旅客和机组人员遇难。在1954年1月10日,一架从罗马钱皮诺机场起飞的"彗星"在起飞20分钟后解体并坠 机场起 (的) 彗星 在起 (20分钟后解体开坠 人地中海, 机上35人全部丧生。没有人目睹 这场灾难, 只有一些不确定、不完整的无线电 信号留给了人们, 也没有明显的什么理由来 解释飞机的坠毁。当时的英国首相丘吉尔说 "要不惜一切人力物力来揭开'彗星'坠毁的 谜团。"经过一番努力,调查人员认为金属疲

劳很可能是造成事故的原因,因此进行了机 身表面的张力测试。测试结果表明窗户角附 近所承受的压力比预期高了非常多,而且机 身所承受的压力也比之前实验的和预期的水平高,其原因仅仅是窗户的形状是正方形的。

为何方形机窗会成为罪魁祸首?

原来,由于"彗星号"喷气式客机飞行速 度快,飞行高度高,所以起降和飞行过程中为

了保证乘客舒适,密闭的机舱内需要不时地 增降气压,这也导致机体在无形中随之产生 弯曲和伸缩。长此以往,就会导致机体金属 疲劳,产生失稳现象。根据材料力学知识我们知道,矩形窗户在面对高压的时候,四个角 上的应力容易集中,也是最脆弱的地方,导致 内部产生纹裂。在载荷和内部裂纹的共同作 用下,机身材料将发生形变,甚至断裂。而把 窗口设计成圆角则可以减少应力不均的问 题,所以现在飞机普遍都采用圆角窗户。

这个设计细节在当时是如此容易被忽 视,以至于来自竞争公司波音和道格拉斯的 代表都表示,他们的飞机设计工程师本来也 没有考虑到这一点,如果"彗星"不是第一架 因此解体的飞机,他们的飞机也可能成为第 一架。于是在这次事故之后,飞机的窗户都 设计成了圆角。

机窗还有哪些其他的"玄机"?

细心的小伙伴可能还观察到飞机的窗户 上一般会有孔,飞行于万米高空的飞机莫名开了个洞,听起来似乎相当危险。但飞机窗 户上的微小孔洞其实是特意设计的,不仅不 危险,还起着保护机内人员安全的关键作用,它也有自己的名字叫作"透气孔"。

事实上,飞机上的每个机窗窗口都由三 层有机玻璃组成,主要材料为丙烯酸纤维。 外层窗玻璃直接与外界接触,内层窗玻璃位于乘客一侧,而透气孔则位于中间层窗户上。由于机舱内外部压力不同,有了这个小 洞,机舱内的较高气压可以直接作用在最外 层玻璃上,当小洞的调节作用达到极限时,最 先破裂的玻璃也会是最外面的那一层。这样 就能保证机舱还是封闭完整的。而且,它还 可以起到防雾排湿的作用,让我们在飞机上 能够畅览云上美景。

据力学科普